A place for mathematics fields and resources that are especially intuitive-friendly.

If you are stuck on math, give these a shot!

**Advice**: If it's not fun or interesting, move along to the next one! And when you find a point of leverage for your brain, dive into it! Explore its breadth and depth.

- Procedural graphics creation / generation. My intuitive math skills went way, way up after playfully experimenting with software like Nodebox and procedural texturing tools in e.g. Art of Illusion and Blender. I could see what e.g. "floor" and "ceiling" and "jitter" and various transforms could do to a graphic, and then over time I was able to intuitively apply those concepts to all kinds of discussions outside of math.
- /r/holofractal - haven't explored it much yet but an INTJ gave a really fascinating presentation on it for the APTi e-chapter. The concept seems very intuitive to me. Also very qualitative, so it hits the skeptic barrier pretty hard, but I'm willing to extravert myself toward it and learn whatever might be useful.
- /r/sacredgeometry - again, haven't explored it much but it does seem like it may be fun for more intuitive types to explore
- Fractals
- /r/fractals (lots of resources in the sidebar)
- Apophysis fractal generation software
- Let Vi Hart show you how to draw fractals on paper (sierpinski is fun for beginners...and there are lots of cool fractal drawing videos)

- 3Blue1Brown on Youtube. Supposedly good for intuitive math.
- Project Polymath - Introduction to Higher Mathematics (Youtube series) - This was very easy for me to intuitively understand overall, though there is a bit of working through things involved, and that part drained my batteries a bit more than I hoped (like when I'm sitting there solving the circles & regions problem, very excited, not realizing how difficult it actually is)
- Philosophy of mathematics - Seems really interesting; I enjoyed some philosophy of science lectures by Jack Sanders I watched on Youtube.
- Using Google (example) or Wolfram Alpha (example) for seeing your changes to formulae visually
- Groups
- Quaternions
- strongly recommend Rethinking Quaternions: Theory and Computation By Ron Goldman and A New Approach to Differential Geometry Using Clifford's Geometric Algebra by John Snygg

- Clifford Algebra
- Conformal Geometric Algebra
- The story of William Rowan Hamilton (no musical yet), Grassmann and Clifford is astounding

(Not really...but if you are stuck, maybe these are why!)

- Fixed-number math, like multiplication tables
- Learning math from the "bottom up" instead of starting with the big picture, or even big-picture discussions of fun / advanced topics
- Things requiring lots of memorization of little details like how to carry the whatever
- Long division

- Trigonometry

This website is maintained by Marc Carson. Do you have tips and ideas or subjects to share? You can email Marc here: baggageclaim@friendlyskies.net